Skip to contents

All functions

data.create() data.cl.create()
Dataset simulation
gPLS()
Group Partial Least Squares (gPLS)
gPLSda()
Group Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
msep.PLS()
PLS function performance assessment using \(MSEP\) indicator
per.variance()
Percentage of variance of the \(Y\) matrix explained by the score-vectors obtained by PLS approaches
perf(<PLS>) perf(<sPLS>) perf(<gPLS>) perf(<sgPLS>) perf(<PLSda>) perf(<sPLSda>) perf(<gPLSda>) perf(<sgPLSda>)
Compute evaluation criteria for PLS, sPLS, PLS-DA and sPLS-DA
plotcim()
Plots a cluster image mapping of correlations between outcomes and all predictors
PLS()
Partial Least Squares (PLS)
PLSda()
Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
predict(<PLS>) predict(<sPLS>) predict(<gPLS>) predict(<sgPLS>) predict(<PLSda>) predict(<sPLSda>) predict(<gPLSda>) predict(<sgPLSda>)
Predict Method for PLS, sPLS, gPLS, sgPLS, sPLDda, gPLSda, sgPLSda
q2.PLS()
PLS function performance assessment using Q2 indicator.
select.spls()
Output of selected variables from a sPLS model
normv soft.thresholding soft.thresholding.group soft.thresholding.sparse.group lambda.quadra step1.spls.sparsity step1.sparse.group.spls.sparsity step1.group.spls.sparsity step2.spls
Internal Functions
sgPLS-package
Group and Sparse Group Partial Least Square Model
sgPLS()
Sparse Group Partial Least Squares (sgPLS)
sgPLSda()
Sparse Group Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
simuData
Simulated Data for group PLS-DA model
sPLS()
Sparse Partial Least Squares (sPLS)
sPLSda()
Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
tuning.gPLS.X()
Choice of the tuning parameter (number of groups) related to predictor matrix for gPLS model (regression mode)
tuning.sgPLS.X()
Choice of the tuning parameters (number of groups and mixing parameter) related to predictor matrix for sgPLS model (regression mode)
tuning.sPLS.X()
Choice of the tuning parameter (number of variables) related to predictor matrix for sPLS model (regression mode)