Package index
-
data.create()
data.cl.create()
- Dataset simulation
-
gPLS()
- Group Partial Least Squares (gPLS)
-
gPLSda()
- Group Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
-
msep.PLS()
- PLS function performance assessment using \(MSEP\) indicator
-
per.variance()
- Percentage of variance of the \(Y\) matrix explained by the score-vectors obtained by PLS approaches
-
perf(<PLS>)
perf(<sPLS>)
perf(<gPLS>)
perf(<sgPLS>)
perf(<PLSda>)
perf(<sPLSda>)
perf(<gPLSda>)
perf(<sgPLSda>)
- Compute evaluation criteria for PLS, sPLS, PLS-DA and sPLS-DA
-
plotcim()
- Plots a cluster image mapping of correlations between outcomes and all predictors
-
PLS()
- Partial Least Squares (PLS)
-
PLSda()
- Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
-
predict(<PLS>)
predict(<sPLS>)
predict(<gPLS>)
predict(<sgPLS>)
predict(<PLSda>)
predict(<sPLSda>)
predict(<gPLSda>)
predict(<sgPLSda>)
- Predict Method for PLS, sPLS, gPLS, sgPLS, sPLDda, gPLSda, sgPLSda
-
q2.PLS()
- PLS function performance assessment using Q2 indicator.
-
select.spls()
- Output of selected variables from a sPLS model
-
normv
soft.thresholding
soft.thresholding.group
soft.thresholding.sparse.group
lambda.quadra
step1.spls.sparsity
step1.sparse.group.spls.sparsity
step1.group.spls.sparsity
step2.spls
- Internal Functions
-
sgPLS-package
- Group and Sparse Group Partial Least Square Model
-
sgPLS()
- Sparse Group Partial Least Squares (sgPLS)
-
sgPLSda()
- Sparse Group Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
-
simuData
- Simulated Data for group PLS-DA model
-
sPLS()
- Sparse Partial Least Squares (sPLS)
-
sPLSda()
- Sparse Partial Least Squares Discriminant Analysis (sPLS-DA)
-
tuning.gPLS.X()
- Choice of the tuning parameter (number of groups) related to predictor matrix for gPLS model (regression mode)
-
tuning.sgPLS.X()
- Choice of the tuning parameters (number of groups and mixing parameter) related to predictor matrix for sgPLS model (regression mode)
-
tuning.sPLS.X()
- Choice of the tuning parameter (number of variables) related to predictor matrix for sPLS model (regression mode)